Publications
Journal papers Conference proceedings/abstracts
(PDF is only for personal use only. Copyrights are reserved by Publishers.)
* Corresponding author
2024
53. Fabrication of uniform microlasers using conventional printing technology
V. D. Ta*, T. T. Hoang, D. T. Nguyen, H. M. Nguyen, T. V. Nguyen, “Fabrication of uniform microlasers using conventional printing technology”, Communications in Physics, 34, 2, 193 (2024).
52. Extended Surface Bands Enabled Lasing Emission and Wavelength Switch from Sulfur Quantum Dots
L. Xiao, R. Duan, X. Zhou, S. Liu, Q. Du, T. Ren, E. K. L. Yeow, V. D. Ta, Y. Huang, H. Sun, “Extended Surface Bands Enabled Lasing Emission and Wavelength Switch from Sulfur Quantum Dots”, Advanced Materials, 36, 45, 2408104.
51. Random lasing in micron-sized individual supraparticles
V. D. Ta*, T. A. Doan, D. C. Duong, S. Caixeiro, D. Saxena, R. Sapienza, “Random lasing in micron-sized individual supraparticles”, Optics Letters, 49, 14, 3886-3889 (2024).
50. High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres
N. V. Pham, Q. N. Nguyen, T. V. Nguyen, T.-A. Nguyen, V. D. Ta*, “High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres”, Optics Letters, 49, 21, 6165-6168 (2024).
2023
49. Starch based microsphere biolasers
V. T. Nguyen, N. N. Phan, H. H. Le, V. D. Ta*, “Starch based microsphere biolasers”, Tạp chí Khoa học và Kỹ thuật, 1 (2023).
48. Single Mode Lasing from CsPbBr3 Microcrystals Fabricated by Solid State Space-Confined Growth
S. Cheng, Z. Qiao, Z. Wang, L. Xiao, S. Das, Y.T. Thung, Z. Yuan, V.D. Ta*, W. Fan*, Y.-C. Chen*, H. Sun*, “Single Mode Lasing from CsPbBr3 Microcrystals Fabricated by Solid State Space-Confined Growth”, Advanced Optical Materials, 11, 2203133 (2023) .
R. Duan, Z. Zhang, L. Xiao, T. Ren, X. Zhou, Y.T. Thung, V.D. Ta, J. Yang, H. Sun, “Dome-shaped mode lasing from liquid crystals for full-color lasers and high-sensitivity detection”, Chemical Communications, 59, 1641-1644 (2023).
Y. Wu, Z. Huang, Q. Sun, V.D. Ta, S. Wang, Y. Wang, “A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain”, Laser & Photonics Reviews, 17, 2200703 (2023) .
2022
45. High-quality telecentric projection lens for vein visualization
L.D. Tuan, T.V. Duong, L.A. Tu, D.N. Thuan, V.K. Kirillovskii, “High-quality telecentric projection lens for vein visualization”, Journal of Optical Technology, 89, 339-345 (2022) .
44. Flexible random laser from a porous polymer film
V.D. Ta*, D.T. Le, T.L. Ngo, X.T. Nguyen, Flexible random laser from a porous polymer film, Optics Communications, 524 (2022) 128794.
T.V. Nguyen, T.D. Nguyen, H.H. Mai, N.V. Pham, V.D. Ta*, T.-A. Nguyen, “Biological miniature temperature sensor based on monodisperse microsphere lasers fabricated by soft microfluidic technology, Journal of Physics D: Applied Physics, 55, 405402 (2022).
42. Random lasers based on inverse photonic glass structure
H. Nguyen, T. Nguyen, H. Le, D. Ta, “Random lasers based on inverse photonic glass structure”, Journal of Military Science and Technology, 84, 127-132(2022).
41. Random lasers from the natural inverse photonic glass structure of Artemia eggshells
H.H. Mai, T.T. Nguyen, T.T. Nguyen, T.T. To, T.T. Nguyen, Y. Choi, W. Choi, V.D. Ta, “Random lasers from the natural inverse photonic glass structure of Artemia eggshells”, Journal of Physics D: Applied Physics, 55, 295104 (2022).
40. Method for determining the wavefront aberration of deformed optical components under external forces
T.D. Le, Q.A. Tran, S.V. Do, H.H. Le, D.V. Ta, “Method for determining the wavefront aberration of deformed optical components under external forces”, Optical Engineering, 61, 115104 (2022).
R. Duan, Z. Zhang, L. Xiao, X. Zhao, Y. T. Thung, L. Ding, Z. Liu, J. Yang*, V. D. Ta* and H. D. Sun*, “Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells,” Advanced Materials 34, 2108884 (2022) (Selected for Back cover)
Google Scholar
2021
T. V. Nguyen, N. V. Pham and V. D. Ta*, “Fabricating Microsphere Lasers by Protein Dehydration: A Fast Fabrication Method and Excellent Lasing Properties,”, VNU Journal of Science: Mathematics – Physics 37 (2021)
Google Scholar PDF
V. D. Ta*, S. Caixeiro, D. Saxena and R. Sapienza*, “Biocompatible polymer and protein microspheres with inverse photonic glass structure for random micro-bio-lasers,” Advanced Photonics Research 2, 2170025 (2021) (Selected for Inside Front cover)
36. Monodisperse and size-tunable high quality factor microsphere biolasers
T. V. Nguyen, T. D. Nguyen, N. V. Pham, T.-A. Nguyen, V. D. Ta*, “Monodisperse and size-tunable high quality factor microsphere biolasers,” Optics Letters 46, 2517-2520 (2021).
35. High quality factor, protein-based microlasers from self-assembled microcracks
T. T. Nguyen, H. H. Mai, T. V. Pham, T. X. Nguyen and V. D. Ta*, “High quality factor, protein-based microlasers from self-assembled microcracks,” Journal of Physics D: Applied Physics 54, 255108 (2021)
2020
34. Chicken albumen based whispering gallery mode microlasers
H. H. Mai*, T. T. Nguyen, Giang. M. K., Do X. T., T. T. Nguyen, H. C. Hoang and V. D. Ta*, “Chicken albumen based whispering gallery mode microlasers,” Soft Matter 16, 9069-9073 (2020).
33. Egg white based biological microlasers
T. V. Nguyen, H. H. Mai, T. V. Nguyen, D. C. Duong and V. D. Ta*, “Egg white based biological microlasers,” Journal of Physics D: Applied Physics 13, 445104 (2020).
32. Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing
V. D. Ta*, D. Saxena, S. Caixeiro, and R. Sapienza, “Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing,” Nanoscale 12, 12357-12363 (2020).
31. Silica based biocompatible random lasers implantable in the skin
V. D. Ta*, T. T. Nguyen, T. H. L. Nghiem, H. N. Tran, A. T. Le, N. T. Dao, P. D. Duong, and H. H. Mai, “Silica based biocompatible random lasers implantable in the skin,” Optics Communications 475(126207 (2020).
2019
30. Protein-based microsphere biolasers fabricated by dehydration
T. V. Nguyen, N. V. Pham, H. H. Mai, D. C. Duong, H. H. Le, R. Sapienza, and V.D. Ta*, “Protein-based microsphere biolasers fabricated by dehydration,” Soft Matter 15, 9721-9726 (2019).
29. Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser
V. D. Ta, R. Chen, and H. Sun, “Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser,” Scientific Reports 9, 17017 (2019).
28. Biocompatible microlasers based on polyvinyl alcohol microspheres
V. D. Ta*, T. V. Nguyen, Q. V. Pham, and T. V. Nguyen, “Biocompatible microlasers based on polyvinyl alcohol microspheres,” Optics Communications 459, 124925 (2019).
27. Microlasers Enabled by Soft‐Matter Technology
V. D. Ta, Y. Wang, H. D. Sun, “Microlasers Enabled by Soft‐Matter Technology”, Advanced Optical Materials 7, 1900057 (2019)
N. N. Phan, H. H. Le, D. C. Duong, D. V. Ta, “Measurement of nanoscale displacements using a Mirau white-light interference microscope and an inclined flat surface”, Optical Engineering 58, 064106 (2019)
2018
25. Microelectronic systems via multifunctional additive manufacturing
J. Li, T. Wasley, V. D. Ta, J. Shephard, J. Stringer, S. Patrick, E. Esenturk, C. Connaughton, R. Harris, R. Kay, “Microelectronic systems via multifunctional additive manufacturing,” Rapid Prototyping Journal 24, 752 (2018).
2017
24. Microsphere solid-state biolasers
V. D. Ta*, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere Solid-State Biolasers” Advanced Optical Materials 5, 1601022 (2017). (Selected for Back Cover)
23. Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots
Y. Wang, V. D. Ta, K. S. Leck, B. H. I. Tan, Z. Wang, T. He, C.-D. Ohl, H. V. Demir, and H. Sun, “Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots,” Nano Letters 17, 2640-2646 (2017).
2016
22. Reconfigurable Liquid Whispering Gallery Mode Microlasers
S. Yang, V. D. Ta, Y. Wang, R. Chen, T. He, H. V. Demir, and H. Sun, “Reconfigurable Liquid Whispering Gallery Mode Microlasers,” Scientific Reports 6, 27200 (2016).
21. Laser textured surface gradients
V. D. Ta*, A. Dunn, T. J. Wasley, J. Li, R. W. Kay, J. Stringer, P. J. Smith, E. Esenturk, C. Connaughton, and J. D. Shephard, “Laser textured surface gradients,” Applied Surface Science 371, 583–589 (2016).
20. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition
V. D. Ta*, A. Dunn, T. J. Wasley, J. Li, R. W. Kay, J. Stringer, P. J. Smith, E. Esenturk, C. Connaughton, and J. D. Shephard, “Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition,” Applied Surface Science 365, 153–159 (2016).
19. Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation
V. D. Ta*, R. Carter, E. Esenturk, C. Connaughton, J. Stringer, P. J. Smith, T. Wasley, J. Li, R. Kay, and J. Shephard, “Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation,” Soft Matter 12, 4530-4536 (2016). (Selected for Inside Cover)
18. Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality
J. Stringer, T. M. Althagathi, C. Christopher, V. D. Ta, J. D. Shephard, E. Esenturk, C. Connaughton, T. J. Wasley, J. Li, R. W. Kay, and P. J. Smith, “Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality,” Manufacturing Review 3, 12 (2016).
17. Hybrid additive manufacturing of 3D electronic systems
J. Li, T. Wasley, T. Nguyen, V. D. Ta, J. Shephard, J. Stringer, P. Smith, E. Esenturk, C. Connaughton, and R. Kay, “Hybrid additive manufacturing of 3D electronic systems,” Journal of Micromechanics and Microengineering 26, 105005 (2016).
2015
16. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi‐continuous pumping
Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi‐continuous pumping,” Advanced Materials 27, 169-175 (2015).
(Selected for Frontispiece)
15. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers
Y. Wang, K. E. Fong, S. Yang, V. D. Ta, Y. Gao, Z. Wang, V. Nalla, H. V. Demir, and H. Sun, “Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers,” Laser & Photonics Reviews 9, 507–516 (2015).
14. Multicolor lasing prints
V. D. Ta, S. Yang, Y. Wang, Y. Gao, T. He, R. Chen, H. V. Demir, and H. Sun, “Multicolor lasing prints,” Applied Physics Letters 107, 221103 (2015).
13. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications
V. D. Ta*, A. Dunn, T. J. Wasley, R. W. Kay, J. Stringer, P. J. Smith, C. Connaughton, and J. D. Shephard, “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications,” Applied Surface Science 357, 248-254 (2015).
12. Observation of polarized gain from aligned colloidal nanorods
Y. Gao, V. D. Ta, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, and X. W. Sun, “Observation of polarized gain from aligned colloidal nanorods,” Nanoscale 7, 6481-6486 (2015).
2014
11. Stimulated Emission and Lasing from CdSe/CdS/ZnS Core-Multi-Shell Quantum Dots by Simultaneous Three-Photon Absorption
Y. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir, and H. D. Sun, “Stimulated Emission and Lasing from CdSe/CdS/ZnS Core-Multi-Shell Quantum Dots by Simultaneous Three-Photon Absorption,” Advanced Materials 26, 2954–2961 (2014).
10. Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing
V. D. Ta, R. Chen, and H. Sun, “Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing,” Advanced Optical Materials 2, 220-225 (2014). (Selected for Inside Front Cover)
9. Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers
R. Chen, V. D. Ta, and H. D. Sun, “Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers,” ACS Photonics 1, 11-16 (2014).
2013
8. Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer
R. Chen, V. D. Ta, F. Xiao, Q. Zhang, and H. Sun, “Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer,” Small 9, 1052-1057 (2013).
7. Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets
V. D. Ta, R. Chen, and H. D. Sun, “Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets,” Scientific Reports 3, 1362 (2013).
6. Application of self-assembled hemispherical microlasers as gas sensors
V. D. Ta, R. Chen, D. Nguyen, and H. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Applied Physics Letters 102, 031107 (2013).
5. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber
V. D. Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser & Photonics Reviews 7, 133-139 (2013). (Selected for Frontispiece)
4. Excitons Localization and Optical Properties Improvement in Nanocrystals-Embedded ZnO Core-Shell Nanowires
R. Chen, Q. Ye, T. He, V. D. Ta, Y. Ying, Y.-Y. Tay, T. Wu, and H. Sun, “Excitons Localization and Optical Properties Improvement in Nanocrystals-Embedded ZnO Core-Shell Nanowires,” Nano Letters 13, 734-739 (2013).
2012
3. Self-Assembled Flexible Microlasers
V. D. Ta, R. Chen, and H. D. Sun, “Self-Assembled Flexible Microlasers,” Advanced Materials 24, OP60-OP64 (2012). (Highlighted by Materialviews)
2. Single-Mode Lasing from Hybrid Hemispherical Microresonators
R. Chen, V. D. Ta, and H. D. Sun, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Scientific Reports 2, 244 (2012).
2011
1. Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode
V. D. Ta, R. Chen, and H. D. Sun, “Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode,” Optics Express 19, 13598-13603 (2011).