Publications

Journal papers                                                                                                         Conference proceedings/abstracts

(PDF is only for personal use only. Copyrights are reserved by Publishers.)
* Corresponding author

2023

49. Starch based microsphere biolasers

V. T. Nguyen, N. N. Phan, H. H. Le, V. D. Ta*, “Starch based microsphere biolasers”, Tạp chí Khoa học và Kỹ thuật, 1 (2023).

Google Scholar

 

48. Single Mode Lasing from CsPbBr3 Microcrystals Fabricated by Solid State Space-Confined Growth

S. Cheng, Z. Qiao, Z. Wang, L. Xiao, S. Das, Y.T. Thung, Z. Yuan, V.D. Ta*, W. Fan*, Y.-C. Chen*, H. Sun*, “Single Mode Lasing from CsPbBr3 Microcrystals Fabricated by Solid State Space-Confined Growth”, Advanced Optical Materials, 11, 2203133 (2023) .

Google Scholar

 

47. Dome-shaped mode lasing from liquid crystals for full-color lasers and high-sensitivity detection

R. Duan, Z. Zhang, L. Xiao, T. Ren, X. Zhou, Y.T. Thung, V.D. Ta, J. Yang, H. Sun, “Dome-shaped mode lasing from liquid crystals for full-color lasers and high-sensitivity detection”, Chemical Communications, 59, 1641-1644 (2023).

Google Scholar

 

46. A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain

Y. Wu, Z. Huang, Q. Sun, V.D. Ta, S. Wang, Y. Wang, “A New Generation of Liquid Lasers from Engineered Semiconductor Nanocrystals with Giant Optical Gain”, Laser & Photonics Reviews, 17, 2200703 (2023) .

Google Scholar

 

2022

45. High-quality telecentric projection lens for vein visualization

L.D. Tuan, T.V. Duong, L.A. Tu, D.N. Thuan, V.K. Kirillovskii, “High-quality telecentric projection lens for vein visualization”, Journal of Optical Technology, 89, 339-345 (2022) .

Google Scholar

 

44. Flexible random laser from a porous polymer film

V.D. Ta*, D.T. Le, T.L. Ngo, X.T. Nguyen, Flexible random laser from a porous polymer film, Optics Communications, 524 (2022) 128794.

Google Scholar

 

43. Biological miniature temperature sensor based on monodisperse microsphere lasers fabricated by soft microfluidic technology

T.V. Nguyen, T.D. Nguyen, H.H. Mai, N.V. Pham, V.D. Ta*, T.-A. Nguyen, “Biological miniature temperature sensor based on monodisperse microsphere lasers fabricated by soft microfluidic technology, Journal of Physics D: Applied Physics, 55, 405402 (2022).

Google Scholar

 

42. Random lasers based on inverse photonic glass structure

H. Nguyen, T. Nguyen, H. Le, D. Ta, “Random lasers based on inverse photonic glass structure”, Journal of Military Science and Technology, 84, 127-132(2022).

Google Scholar

 

41. Random lasers from the natural inverse photonic glass structure of Artemia eggshells

H.H. Mai, T.T. Nguyen, T.T. Nguyen, T.T. To, T.T. Nguyen, Y. Choi, W. Choi, V.D. Ta, “Random lasers from the natural inverse photonic glass structure of Artemia eggshells”, Journal of Physics D: Applied Physics, 55, 295104 (2022).

Google Scholar

 

40. Method for determining the wavefront aberration of deformed optical components under external forces

T.D. Le, Q.A. Tran, S.V. Do, H.H. Le, D.V. Ta, “Method for determining the wavefront aberration of deformed optical components under external forces”, Optical Engineering, 61, 115104 (2022).

Google Scholar

 

39. Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells

R. Duan, Z. Zhang, L. Xiao, X. Zhao, Y. T. Thung, L. Ding, Z. Liu, J. Yang*, V. D. Ta* and H. D. Sun*, “Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells,Advanced Materials 34, 2108884 (2022) (Selected for Back cover)
Google Scholar

 

2021

38. Fabricating Microsphere Lasers by Protein Dehydration: A Fast Fabrication Method and Excellent Lasing Properties

T. V. Nguyen, N. V. Pham and V. D. Ta*, “Fabricating Microsphere Lasers by Protein Dehydration: A Fast Fabrication Method and Excellent Lasing Properties,”, VNU Journal of Science: Mathematics – Physics 37 (2021)

Google Scholar               PDF

 

37. Biocompatible polymer and protein microspheres with inverse photonic glass structure for random micro-biolasers

V. D. Ta*, S. Caixeiro, D. Saxena and R. Sapienza*, “Biocompatible polymer and protein microspheres with inverse photonic glass structure for random micro-bio-lasers,” Advanced Photonics Research 2, 2170025 (2021) (Selected for Inside Front cover)

Google Scholar         PDF

 

36. Monodisperse and size-tunable high quality factor microsphere biolasers

T. V. Nguyen, T. D. Nguyen, N. V. Pham, T.-A. Nguyen, V. D. Ta*, Monodisperse and size-tunable high quality factor microsphere biolasers,” Optics Letters 46, 2517-2520 (2021).

Google Scholar         PDF

 

35.  High quality factor, protein-based microlasers from self-assembled microcracks

T. T. Nguyen, H. H. Mai, T. V. Pham, T. X. Nguyen and V. D. Ta*, “High quality factor, protein-based microlasers from self-assembled microcracks,” Journal of Physics D: Applied Physics 54, 255108 (2021)

Google Scholar         PDF

 

 

2020

34. Chicken albumen based whispering gallery mode microlasers

H. H. Mai*, T. T. Nguyen, Giang. M. K., Do X. T., T. T. Nguyen, H. C. Hoang and V. D. Ta*, “Chicken albumen based whispering gallery mode microlasers,” Soft Matter 16, 9069-9073 (2020).

Google Scholar         PDF

 

33. Egg white based biological microlasers

T. V. Nguyen, H. H. Mai, T. V. Nguyen, D. C. Duong and V. D. Ta*, “Egg white based biological microlasers,” Journal of Physics D: Applied Physics 13, 445104 (2020).

Google Scholar         PDF

 

32. Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing

V. D. Ta*, D. Saxena, S. Caixeiro, and R. Sapienza, “Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing,” Nanoscale 12, 12357-12363 (2020).

Google Scholar         PDF

 

31. Silica based biocompatible random lasers implantable in the skin

V. D. Ta*, T. T. Nguyen, T. H. L. Nghiem, H. N. Tran, A. T. Le, N. T. Dao, P. D. Duong, and H. H. Mai, “Silica based biocompatible random lasers implantable in the skin,” Optics Communications 475(126207 (2020).

Google Scholar         PDF

 

 

2019

30. Protein-based microsphere biolasers fabricated by dehydration

T. V. Nguyen, N. V. Pham, H. H. Mai, D. C. Duong, H. H. Le, R. Sapienza, and V.D. Ta*, “Protein-based microsphere biolasers fabricated by dehydration,” Soft Matter 15, 9721-9726 (2019).

Google Scholar         PDF

 

29. Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser

V. D. Ta, R. Chen, and H. Sun, “Controllable Polarization of Lasing Emission From a Polymer Microfiber Laser,” Scientific Reports 9, 17017 (2019).

Google Scholar         PDF

 

28. Biocompatible microlasers based on polyvinyl alcohol microspheres

V. D. Ta*, T. V. Nguyen, Q. V. Pham, and T. V. Nguyen, “Biocompatible microlasers based on polyvinyl alcohol microspheres,” Optics Communications 459, 124925 (2019).

Google Scholar         PDF

 

27. Microlasers Enabled by Soft‐Matter Technology

V. D. Ta, Y. Wang, H. D. Sun, “Microlasers Enabled by Soft‐Matter Technology”, Advanced Optical Materials 7, 1900057 (2019)

Google Scholar         PDF

 

26. Measurement of nanoscale displacements using a Mirau white-light interference microscope and an inclined flat surface

N. N. Phan, H. H. Le, D. C. Duong, D. V. Ta, “Measurement of nanoscale displacements using a Mirau white-light interference microscope and an inclined flat surface”, Optical Engineering 58, 064106 (2019)

Google Scholar         PDF

 

 

2018

25. Microelectronic systems via multifunctional additive manufacturing

J. Li, T. Wasley, V. D. Ta, J. Shephard, J. Stringer, S. Patrick, E. Esenturk, C. Connaughton, R. Harris, R. Kay, “Microelectronic systems via multifunctional additive manufacturing,” Rapid Prototyping Journal 24, 752 (2018).

Google Scholar         PDF

 

 

2017
24. Microsphere solid-state biolasers
V. D. Ta*, S. Caixeiro, F. M. Fernandes, and R. Sapienza, “Microsphere Solid-State Biolasers” Advanced Optical Materials 5, 1601022 (2017). (Selected for Back Cover)

Google Scholar           PDF

23. Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots
Y. Wang, V. D. Ta, K. S. Leck, B. H. I. Tan, Z. Wang, T. He, C.-D. Ohl, H. V. Demir, and H. Sun, “Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots,” Nano Letters 17, 2640-2646 (2017).

Google Scholar           PDF

 

 

2016

22. Reconfigurable Liquid Whispering Gallery Mode Microlasers
S. Yang, V. D. Ta, Y. Wang, R. Chen, T. He, H. V. Demir, and H. Sun, “Reconfigurable Liquid Whispering Gallery Mode Microlasers,” Scientific Reports 6, 27200 (2016).

Google Scholar           PDF

21. Laser textured surface gradients
V. D. Ta*, A. Dunn, T. J. Wasley, J. Li, R. W. Kay, J. Stringer, P. J. Smith, E. Esenturk, C. Connaughton, and J. D. Shephard, “Laser textured surface gradients,” Applied Surface Science 371, 583–589 (2016).

Google Scholar          PDF

20. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition
V. D. Ta*, A. Dunn, T. J. Wasley, J. Li, R. W. Kay, J. Stringer, P. J. Smith, E. Esenturk, C. Connaughton, and J. D. Shephard, “Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition,” Applied Surface Science 365, 153–159 (2016).

Google Scholar          PDF

19. Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation
V. D. Ta*, R. Carter, E. Esenturk, C. Connaughton, J. Stringer, P. J. Smith, T. Wasley, J. Li, R. Kay, and J. Shephard, “Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation,” Soft Matter 12, 4530-4536 (2016). (Selected for Inside Cover)

Google Scholar          PDF

18. Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality
J. Stringer, T. M. Althagathi, C. Christopher, V. D. Ta, J. D. Shephard, E. Esenturk, C. Connaughton, T. J. Wasley, J. Li, R. W. Kay, and P. J. Smith, “Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality,” Manufacturing Review 3, 12 (2016).

Google Scholar          PDF

17. Hybrid additive manufacturing of 3D electronic systems
J. Li, T. Wasley, T. Nguyen, V. D. Ta, J. Shephard, J. Stringer, P. Smith, E. Esenturk, C. Connaughton, and R. Kay, “Hybrid additive manufacturing of 3D electronic systems,” Journal of Micromechanics and Microengineering 26, 105005 (2016).

Google Scholar          PDF

 

 

2015

16. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi‐continuous pumping
Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi‐continuous pumping,” Advanced Materials 27, 169-175 (2015).
(Selected for Frontispiece)

Google Scholar          PDF

15. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers
Y. Wang, K. E. Fong, S. Yang, V. D. Ta, Y. Gao, Z. Wang, V. Nalla, H. V. Demir, and H. Sun, “Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers,” Laser & Photonics Reviews 9, 507–516 (2015).

Google Scholar          PDF

14. Multicolor lasing prints
V. D. Ta, S. Yang, Y. Wang, Y. Gao, T. He, R. Chen, H. V. Demir, and H. Sun, “Multicolor lasing prints,” Applied Physics Letters 107, 221103 (2015).

Google Scholar          PDF

13. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications
V. D. Ta*, A. Dunn, T. J. Wasley, R. W. Kay, J. Stringer, P. J. Smith, C. Connaughton, and J. D. Shephard, “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications,” Applied Surface Science 357, 248-254 (2015).

Google Scholar          PDF

12. Observation of polarized gain from aligned colloidal nanorods
Y. Gao, V. D. Ta, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, and X. W. Sun, “Observation of polarized gain from aligned colloidal nanorods,” Nanoscale 7, 6481-6486 (2015).

Google Scholar          PDF

 

 

2014

11. Stimulated Emission and Lasing from CdSe/CdS/ZnS Core-Multi-Shell Quantum Dots by Simultaneous Three-Photon Absorption
Y. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir, and H. D. Sun, “Stimulated Emission and Lasing from CdSe/CdS/ZnS Core-Multi-Shell Quantum Dots by Simultaneous Three-Photon Absorption,” Advanced Materials 26, 2954–2961 (2014).

Google Scholar          PDF

10. Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing
V. D. Ta, R. Chen, and H. Sun, “Coupled Polymer Microfiber Lasers for Single Mode Operation and Enhanced Refractive Index Sensing,” Advanced Optical Materials 2, 220-225 (2014). (Selected for Inside Front Cover)

Google Scholar          PDF

9. Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers
R. Chen, V. D. Ta, and H. D. Sun, “Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers,” ACS Photonics 1, 11-16 (2014).

Google Scholar          PDF

 

 

2013

8. Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer
R. Chen, V. D. Ta, F. Xiao, Q. Zhang, and H. Sun, “Multicolor Hybrid Upconversion Nanoparticles and Their Improved Performance as Luminescence Temperature Sensors Due to Energy Transfer,” Small 9, 1052-1057 (2013).

Google Scholar          PDF

7. Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets
V. D. Ta, R. Chen, and H. D. Sun, “Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets,” Scientific Reports 3, 1362 (2013).

Google Scholar          PDF

6. Application of self-assembled hemispherical microlasers as gas sensors
V. D. Ta, R. Chen, D. Nguyen, and H. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Applied Physics Letters 102, 031107 (2013).

Google Scholar          PDF

5. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber
V. D. Ta, R. Chen, L. Ma, Y. Jun Ying, and H. Dong Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser & Photonics Reviews 7, 133-139 (2013). (Selected for Frontispiece)

Google Scholar          PDF

4. Excitons Localization and Optical Properties Improvement in Nanocrystals-Embedded ZnO Core-Shell Nanowires
R. Chen, Q. Ye, T. He, V. D. Ta, Y. Ying, Y.-Y. Tay, T. Wu, and H. Sun, “Excitons Localization and Optical Properties Improvement in Nanocrystals-Embedded ZnO Core-Shell Nanowires,” Nano Letters 13, 734-739 (2013).

Google Scholar          PDF

 

 

2012

3. Self-Assembled Flexible Microlasers
V. D. Ta, R. Chen, and H. D. Sun, “Self-Assembled Flexible Microlasers,” Advanced Materials 24, OP60-OP64 (2012). (Highlighted by Materialviews)

Google Scholar          PDF

2. Single-Mode Lasing from Hybrid Hemispherical Microresonators
R. Chen, V. D. Ta, and H. D. Sun, “Single Mode Lasing from Hybrid Hemispherical Microresonators,” Scientific Reports 2, 244 (2012).

Google Scholar         PDF

 

 

2011

1. Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode
V. D. Ta, R. Chen, and H. D. Sun, “Wide-range coupling between surface plasmon polariton and cylindrical dielectric waveguide mode,” Optics Express 19, 13598-13603 (2011).

Google Scholar          PDF